|
|
@@ -0,0 +1,210 @@
|
|
|
+package com.jttserver.codec.audio;
|
|
|
+/**
|
|
|
+ * Created by houcheng on 2019-12-05.
|
|
|
+ * ADPCM 和 PCM转换
|
|
|
+ */
|
|
|
+public final class ADPCMCodec
|
|
|
+{
|
|
|
+ static int[] indexTable = {
|
|
|
+ -1, -1, -1, -1, 2, 4, 6, 8,
|
|
|
+ -1, -1, -1, -1, 2, 4, 6, 8
|
|
|
+ };
|
|
|
+ static int[] stepsizeTable = {
|
|
|
+ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
|
|
|
+ 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
|
|
|
+ 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
|
|
|
+ 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
|
|
|
+ 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
|
|
|
+ 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
|
|
|
+ 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
|
|
|
+ 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
|
+ 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
|
|
|
+ };
|
|
|
+ public static class State
|
|
|
+ {
|
|
|
+ public short valprev;
|
|
|
+ public byte index;
|
|
|
+ }
|
|
|
+ public byte[] toPCM(byte[] data)
|
|
|
+ {
|
|
|
+ State state = new State();
|
|
|
+ int dlen = data.length / 2;
|
|
|
+ byte[] temp;
|
|
|
+ // 如果前四字节是00 01 52 00,则是海思头,需要去掉,否则就视为普通的ADPCM编码
|
|
|
+ if (data[0] == 0x00 && data[1] == 0x01 && (data[2] & 0xff) == (data.length - 4) / 2 && data[3] == 0x00)
|
|
|
+ {
|
|
|
+ dlen = (data.length - 8);
|
|
|
+ temp = new byte[data.length - 8];
|
|
|
+ System.arraycopy(data, 8, temp, 0, temp.length);
|
|
|
+ state.valprev = (short)(((data[5] << 8) & 0xff00) | (data[4] & 0xff));
|
|
|
+ state.index = data[6];
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ dlen = data.length - 4;
|
|
|
+ temp = new byte[data.length - 4];
|
|
|
+ System.arraycopy(data, 4, temp, 0, temp.length);
|
|
|
+ state.valprev = (short)(((data[1] << 8) & 0xff00) | (data[0] & 0xff));
|
|
|
+ state.index = data[2];
|
|
|
+ }
|
|
|
+ short[] outdata = new short[dlen * 2];
|
|
|
+ adpcm_decoder(temp, outdata, dlen * 2, state);
|
|
|
+ temp = new byte[dlen * 4];
|
|
|
+ for (int i = 0, k = 0; i < outdata.length; i++)
|
|
|
+ {
|
|
|
+ short s = outdata[i];
|
|
|
+ temp[k++] = (byte)(s & 0xff);
|
|
|
+ temp[k++] = (byte)((s >> 8) & 0xff);
|
|
|
+ }
|
|
|
+ return temp;
|
|
|
+ }
|
|
|
+ public byte[] fromPCM(byte[] data)
|
|
|
+ {
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ public static void adpcm_coder(short[] indata, byte[] outdata, int len, State state)
|
|
|
+ {
|
|
|
+ int val; /* Current input sample value */
|
|
|
+ int sign; /* Current adpcm sign bit */
|
|
|
+ int delta; /* Current adpcm output value */
|
|
|
+ int diff; /* Difference between val and valprev */
|
|
|
+ int step; /* Stepsize */
|
|
|
+ int valpred; /* Predicted output value */
|
|
|
+ int vpdiff; /* Current change to valpred */
|
|
|
+ int index; /* Current step change index */
|
|
|
+ int outputbuffer = 0; /* place to keep previous 4-bit value */
|
|
|
+ int bufferstep; /* toggle between outputbuffer/output */
|
|
|
+ byte[] outp = outdata;
|
|
|
+ short[] inp = indata;
|
|
|
+ valpred = state.valprev;
|
|
|
+ index = state.index;
|
|
|
+ step = stepsizeTable[index];
|
|
|
+ bufferstep = 1;
|
|
|
+ int k = 0;
|
|
|
+ for ( int i = 0; len > 0 ; len--, i++) {
|
|
|
+ val = inp[i];
|
|
|
+ /* Step 1 - compute difference with previous value */
|
|
|
+ diff = val - valpred;
|
|
|
+ sign = (diff < 0) ? 8 : 0;
|
|
|
+ if ( sign != 0) diff = (-diff);
|
|
|
+ /* Step 2 - Divide and clamp */
|
|
|
+ /* Note:
|
|
|
+ ** This code *approximately* computes:
|
|
|
+ ** delta = diff*4/step;
|
|
|
+ ** vpdiff = (delta+0.5)*step/4;
|
|
|
+ ** but in shift step bits are dropped. The net result of this is
|
|
|
+ ** that even if you have fast mul/div hardware you cannot put it to
|
|
|
+ ** good use since the fixup would be too expensive.
|
|
|
+ */
|
|
|
+ delta = 0;
|
|
|
+ vpdiff = (step >> 3);
|
|
|
+ if ( diff >= step ) {
|
|
|
+ delta = 4;
|
|
|
+ diff -= step;
|
|
|
+ vpdiff += step;
|
|
|
+ }
|
|
|
+ step >>= 1;
|
|
|
+ if ( diff >= step ) {
|
|
|
+ delta |= 2;
|
|
|
+ diff -= step;
|
|
|
+ vpdiff += step;
|
|
|
+ }
|
|
|
+ step >>= 1;
|
|
|
+ if ( diff >= step ) {
|
|
|
+ delta |= 1;
|
|
|
+ vpdiff += step;
|
|
|
+ }
|
|
|
+ /* Step 3 - Update previous value */
|
|
|
+ if ( sign != 0 )
|
|
|
+ valpred -= vpdiff;
|
|
|
+ else
|
|
|
+ valpred += vpdiff;
|
|
|
+ /* Step 4 - Clamp previous value to 16 bits */
|
|
|
+ if ( valpred > 32767 )
|
|
|
+ valpred = 32767;
|
|
|
+ else if ( valpred < -32768 )
|
|
|
+ valpred = -32768;
|
|
|
+ /* Step 5 - Assemble value, update index and step values */
|
|
|
+ delta |= sign;
|
|
|
+ index += indexTable[delta];
|
|
|
+ if ( index < 0 ) index = 0;
|
|
|
+ if ( index > 88 ) index = 88;
|
|
|
+ step = stepsizeTable[index];
|
|
|
+ /* Step 6 - Output value */
|
|
|
+ if ( bufferstep != 0 ) {
|
|
|
+ outputbuffer = (delta << 4) & 0xf0;
|
|
|
+ } else {
|
|
|
+ outp[k++] = (byte)((delta & 0x0f) | outputbuffer);
|
|
|
+ }
|
|
|
+ bufferstep = bufferstep == 0 ? 1 : 0;
|
|
|
+ }
|
|
|
+ /* Output last step, if needed */
|
|
|
+ if ( bufferstep == 0 )
|
|
|
+ outp[k++] = (byte)outputbuffer;
|
|
|
+ state.valprev = (short)valpred;
|
|
|
+ state.index = (byte)index;
|
|
|
+ }
|
|
|
+ public static void adpcm_decoder(byte[] indata, short[] outdata, int len, State state)
|
|
|
+ {
|
|
|
+ // signed char *inp; /* Input buffer pointer */
|
|
|
+ // short *outp; /* output buffer pointer */
|
|
|
+ int sign; /* Current adpcm sign bit */
|
|
|
+ int delta; /* Current adpcm output value */
|
|
|
+ int step; /* Stepsize */
|
|
|
+ int valpred; /* Predicted value */
|
|
|
+ int vpdiff; /* Current change to valpred */
|
|
|
+ int index; /* Current step change index */
|
|
|
+ int inputbuffer = 0; /* place to keep next 4-bit value */
|
|
|
+ int bufferstep; /* toggle between inputbuffer/input */
|
|
|
+ short[] outp = outdata;
|
|
|
+ byte[] inp = indata;
|
|
|
+ valpred = state.valprev;
|
|
|
+ index = state.index;
|
|
|
+ if ( index < 0 ) index = 0;
|
|
|
+ if ( index > 88 ) index = 88;
|
|
|
+ step = stepsizeTable[index];
|
|
|
+ bufferstep = 0;
|
|
|
+ int k = 0;
|
|
|
+ for ( int i = 0; len > 0 ; len-- ) {
|
|
|
+ /* Step 1 - get the delta value */
|
|
|
+ if ( bufferstep != 0 ) {
|
|
|
+ delta = inputbuffer & 0xf;
|
|
|
+ } else {
|
|
|
+ inputbuffer = inp[i++];
|
|
|
+ delta = (inputbuffer >> 4) & 0xf;
|
|
|
+ }
|
|
|
+ bufferstep = bufferstep == 0 ? 1 : 0;
|
|
|
+ /* Step 2 - Find new index value (for later) */
|
|
|
+ index += indexTable[delta];
|
|
|
+ if ( index < 0 ) index = 0;
|
|
|
+ if ( index > 88 ) index = 88;
|
|
|
+ /* Step 3 - Separate sign and magnitude */
|
|
|
+ sign = delta & 8;
|
|
|
+ delta = delta & 7;
|
|
|
+ /* Step 4 - Compute difference and new predicted value */
|
|
|
+ /*
|
|
|
+ ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
|
|
|
+ ** in adpcm_coder.
|
|
|
+ */
|
|
|
+ vpdiff = step >> 3;
|
|
|
+ if ( (delta & 4) > 0 ) vpdiff += step;
|
|
|
+ if ( (delta & 2) > 0 ) vpdiff += step>>1;
|
|
|
+ if ( (delta & 1) > 0 ) vpdiff += step>>2;
|
|
|
+ if ( sign != 0 )
|
|
|
+ valpred -= vpdiff;
|
|
|
+ else
|
|
|
+ valpred += vpdiff;
|
|
|
+ /* Step 5 - clamp output value */
|
|
|
+ if ( valpred > 32767 )
|
|
|
+ valpred = 32767;
|
|
|
+ else if ( valpred < -32768 )
|
|
|
+ valpred = -32768;
|
|
|
+ /* Step 6 - Update step value */
|
|
|
+ step = stepsizeTable[index];
|
|
|
+ /* Step 7 - Output value */
|
|
|
+ outp[k++] = (short)valpred;
|
|
|
+ }
|
|
|
+ state.valprev = (short)valpred;
|
|
|
+ state.index = (byte)index;
|
|
|
+ }
|
|
|
+}
|